Перевод: со всех языков на все языки

со всех языков на все языки

energy-producing technique

  • 1 Energietechnik

    Ener|gie|tech|nik
    f
    energy-producing technique

    Deutsch-Englisch Wörterbuch > Energietechnik

  • 2 Coolidge, William David

    SUBJECT AREA: Electricity, Metallurgy
    [br]
    b. 23 October 1873 Hudson, Massachusetts, USA
    d. 3 February 1975 New York, USA
    [br]
    American physicist and metallurgist who invented a method of producing ductile tungsten wire for electric lamps.
    [br]
    Coolidge obtained his BS from the Massachusetts Institute of Technology (MIT) in 1896, and his PhD (physics) from the University of Leipzig in 1899. He was appointed Assistant Professor of Physics at MIT in 1904, and in 1905 he joined the staff of the General Electric Company's research laboratory at Schenectady. In 1905 Schenectady was trying to make tungsten-filament lamps to counter the competition of the tantalum-filament lamps then being produced by their German rival Siemens. The first tungsten lamps made by Just and Hanaman in Vienna in 1904 had been too fragile for general use. Coolidge and his life-long collaborator, Colin G. Fink, succeeded in 1910 by hot-working directly dense sintered tungsten compacts into wire. This success was the result of a flash of insight by Coolidge, who first perceived that fully recrystallized tungsten wire was always brittle and that only partially work-hardened wire retained a measure of ductility. This grasped, a process was developed which induced ductility into the wire by hot-working at temperatures below those required for full recrystallization, so that an elongated fibrous grain structure was progressively developed. Sintered tungsten ingots were swaged to bar at temperatures around 1,500°C and at the end of the process ductile tungsten filament wire was drawn through diamond dies around 550°C. This process allowed General Electric to dominate the world lamp market. Tungsten lamps consumed only one-third the energy of carbon lamps, and for the first time the cost of electric lighting was reduced to that of gas. Between 1911 and 1914, manufacturing licences for the General Electric patents had been granted for most of the developed work. The validity of the General Electric monopoly was bitterly contested, though in all the litigation that followed, Coolidge's fibering principle was upheld. Commercial arrangements between General Electric and European producers such as Siemens led to the name "Osram" being commonly applied to any lamp with a drawn tungsten filament. In 1910 Coolidge patented the use of thoria as a particular additive that greatly improved the high-temperature strength of tungsten filaments. From this development sprang the technique of "dispersion strengthening", still being widely used in the development of high-temperature alloys in the 1990s. In 1913 Coolidge introduced the first controllable hot-cathode X-ray tube, which had a tungsten target and operated in vacuo rather than in a gaseous atmosphere. With this equipment, medical radiography could for the first time be safely practised on a routine basis. During the First World War, Coolidge developed portable X-ray units for use in field hospitals, and between the First and Second World Wars he introduced between 1 and 2 million X-ray machines for cancer treatment and for industrial radiography. He became Director of the Schenectady laboratory in 1932, and from 1940 until 1944 he was Vice-President and Director of Research. After retirement he was retained as an X-ray consultant, and in this capacity he attended the Bikini atom bomb trials in 1946. Throughout the Second World War he was a member of the National Defence Research Committee.
    [br]
    Bibliography
    1965, "The development of ductile tungsten", Sorby Centennial Symposium on the History of Metallurgy, AIME Metallurgy Society Conference, Vol. 27, ed. Cyril Stanley Smith, Gordon and Breach, pp. 443–9.
    Further Reading
    D.J.Jones and A.Prince, 1985, "Tungsten and high density alloys", Journal of the Historical Metallurgy Society 19(1):72–84.
    ASD

    Biographical history of technology > Coolidge, William David

См. также в других словарях:

  • Energy storage — is the storing of some form of energy that can be drawn upon at a later time to perform some useful operation. A device that stores energy is sometimes called an accumulator. All forms of energy are either potential energy (eg. chemical,… …   Wikipedia

  • Sustainable energy — Renewable energy …   Wikipedia

  • Classical guitar technique — This article is about the Contemporary classical guitar technique. For the baroque guitar technique see Baroque guitar and for the romantique guitar technique, see Romantic guitar. The classical guitar technique is a fingerstyle technique used by …   Wikipedia

  • Wireless energy transfer — or wireless power is the transmission of electrical energy from a power source to an electrical load without artificial interconnecting conductors. Wireless transmission is useful in cases where interconnecting wires are inconvenient, hazardous,… …   Wikipedia

  • Solar thermal energy — Solar thermal system for water heating in Santorini, Greece …   Wikipedia

  • Nuclear binding energy — is the energy required to split a nucleus of an atom into its component parts. The component parts are neutrons and protons, which are collectively called nucleons. If the binding energy for the products is higher when light nuclei fuse, or when… …   Wikipedia

  • Life Sciences — ▪ 2009 Introduction Zoology       In 2008 several zoological studies provided new insights into how species life history traits (such as the timing of reproduction or the length of life of adult individuals) are derived in part as responses to… …   Universalium

  • Fusion power — The Sun is a natural fusion reactor. Fusion power is the power generated by nuclear fusion processes. In fusion reactions two light atomic nuclei fuse together to form a heavier nucleus (in contrast with fission power). In doing so they release a …   Wikipedia

  • fusion reactor — Physics. a reactor for producing atomic energy by nuclear fusion. Cf. reactor (def. 4). * * * Introduction also called  fusion power plant  or  thermonuclear reactor   a device to produce electrical power from the energy released in a nuclear… …   Universalium

  • particle accelerator — accelerator (def. 7). [1945 50] * * * Device that accelerates a beam of fast moving, electrically charged atoms (ions) or subatomic particles. Accelerators are used to study the structure of atomic nuclei (see atom) and the nature of subatomic… …   Universalium

  • cañada — /keuhn yah deuh, yad euh/, n. Chiefly Western U.S. 1. a dry riverbed. 2. a small, deep canyon. [1840 50; < Sp, equiv. to cañ(a) CANE + ada n. suffix] * * * Canada Introduction Canada Background: A land of vast distances and rich natural resources …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»